

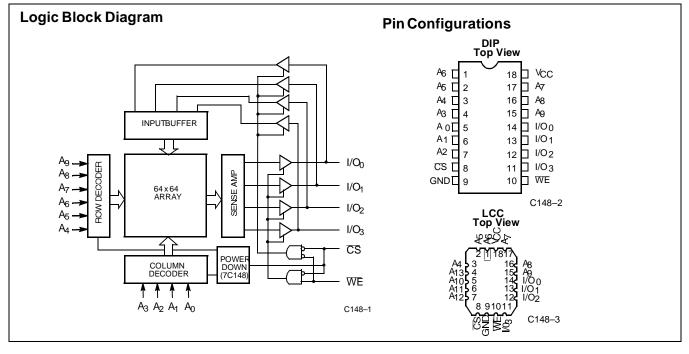
CY7C148 CY7C149

Features

- Automatic power-down when deselected (7C148)
- CMOS for optimum speed/power
- 25-ns access time
- Low active power
 - -440 mW (commercial)
 - 605 mW (military)
- Low standby power (7C148)
 - -82.5 mW (25-ns version)
 - 55 mW (all others)
- 5-volt power supply \pm 10% tolerance, both commercial and military
- TTL-compatible inputs and outputs

Functional Description

The CY7C148 and CY7C149 are high-performance CMOS static RAMs organized as 1024 by 4 bits. Easy memory expan-


1Kx4 Static RAM

sion is provided by an active LOW chip select (\overline{CS}) input and three-state outputs. The CY7C148 remains in a low-power mode as long as the device remains unselected; i.e., (\overline{CS}) is HIGH, thus reducing the average power requirements of the device. The chip select (\overline{CS}) of the CY7C149 does not affect the power dissipation of the device.

Writing to the device is accomplished when the chip select (\overline{CS}) and write enable (\overline{WE}) inputs are both LOW. Data on the I/O pins $(I/O_0 \text{ through } I/O_3)$ is written into the memory locations specified on the address pins $(A_0 \text{ through } A_9)$.

Reading the device is accomplished by taking chip select (\overline{CS}) LOW while write enable (\overline{WE}) remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the four data I/O pins.

The I/O pins remain in a high-impedance state when chip select (\overline{CS}) is HIGH or write enable (\overline{WE}) is LOW.

Selection Guide

		7C148-25	7C148–35	7C148–45	7C149–25	7C149–35	7C149–45
Maximum Access Time (ns)		25	35	45	25	35	45
Maximum Operating Current (mA)	Commercial	90	80	80	90	80	80
	Military		110	110		110	110
Maximum Standby	Commercial	15	10	10			
Current (mA)	Military		10	10			

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to+150°C
Ambient Temperature with Power Applied	55°C to+125°C
Supply Voltage to Ground Potential (Pin 18 to Pin 9)	0.5V to+7.0V
DC Voltage Applied to Outputs in High Z State	-0.51/10+7.01/
DC Input Voltage	
Output Current into Outputs (LOW)	20 mA

Static Discharge Voltage>2001V (per MIL-STD-883, Method 3015) Latch-Up Current......>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Military ^[1]	–55°C to +125°C	5V ± 10%

Note:

1. T_A is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range^[2]

						18–25 19–25		–35, 45 –35, 45	
Parameter	Description	Test Co	nditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$	0 mA		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage				2.0	6.0	2.0	6.0	V
V _{IL}	Input LOW Voltage				-3.0	0.8	-3.0	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$			-10	10	-10	10	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC} Out$	put Disable	ed	-50	50	-50	50	μA
I _{CC}	V _{CC} Operating	Max. V_{CC} , $\overline{CS} \le V_{IL}$,		Com'l		90		80	mA
	Supply Current	Output Open		Mil				110	
I _{SB}	Automatic CS	Max. V_{CC} , $\overline{CS} \ge V_{IH}$	7C148	Com'l		15		10	mA
	Power-Down Current		Only	Mil				10	
I _{PO}	Peak Power-On	Max. V _{CC} , <u>CS</u> ≥ V _{IH}	7C148	Com'l		15		10	mA
	Current ^[3]		Only	Mil				10	
I _{OS}	Output Short Circuit Current ^[4]	$GND \le V_O \le V_{CC}$		Com'l		±275		±275	mA
	Circuit Current ^[4]			Mil				±350	

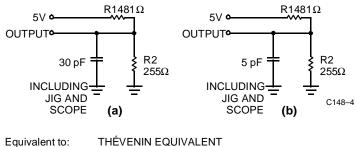
Notes:

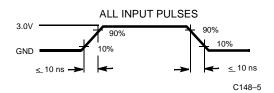
2. 3.

See the last page of this specification for Group A subgroup testing information. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power-up. Otherwise current will exceed values given (CY7C148) only).

4. For test purposes, not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Capacitance^[5]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF


Note:

5. Tested initially and after any design or process changes that may affect these parameters.

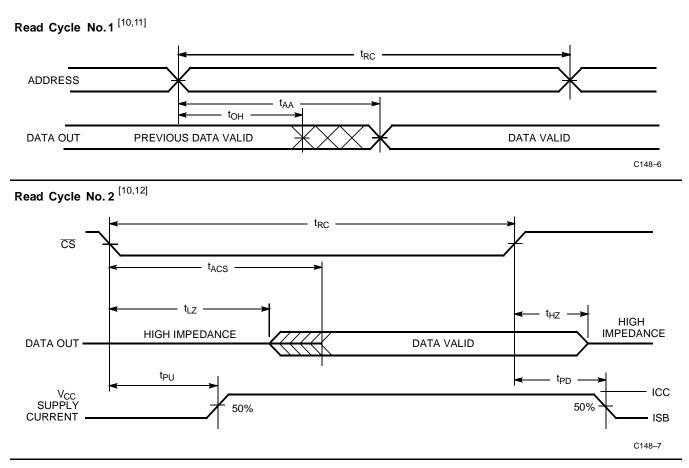
AC Test Loads and Waveforms

Equivalent to:

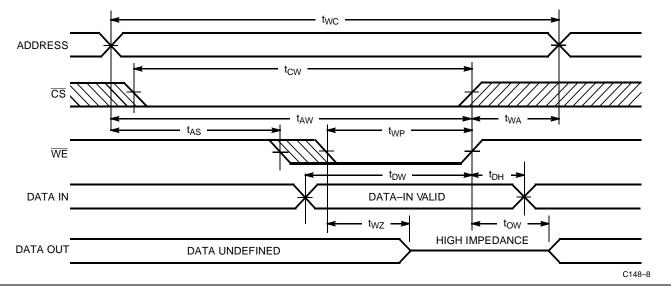
167Ω OUTPUT -**-0** 1.73V

Switching Characteristics Over the Operating Range^[2]

				18–25 19–25		18–35 19–35		18–45 19–45	
Parameter	Description			Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	Ē								
t _{RC}	Address Valid to Address Do Not Care Til (Read Cycle Time)	me	25		35		45		ns
t _{AA}	Address Valid to Data Out Valid Delay (Address Access Time)			25		35		45	ns
t _{ACS1}	Chip Select LOW to Data Out Valid (7C14	18 only)		25 ^[6]		35		45	ns
t _{ACS2}				30 ^[7]		35		45	ns
t _{ACS}	Chip Select LOW to Data Out Valid (7C14	19 only)		15		15		20	ns
t _{LZ} ^[8]	Chip Select LOW to Data Out On	7C148	8		10		10		ns
		7C149	5		5		5		
t _{HZ} ^[8]	Chip Select HIGH to Data Out Off		0	15	0	20	0	20	ns
t _{OH}	Address Unknown to Data Out Unknown	Time	0		0		5		ns
t _{PD}	Chip Select HIGH to Power-Down Delay	7C148		20		30		30	ns
t _{PU}	Chip Select LOW to Power-Up Delay	7C148	0		0		0		ns
WRITE CYCL	E	•			•				
t _{WC}	Address Valid to Address Do Not Care (Write Cycle Time)		25		35		45		ns
t _{WP} ^[9]	Write Enable LOW to Write Enable HIGH		20		30		35		ns
t _{WR}	Address Hold from Write End		5		5		5		ns
t _{WZ} ^[8]	Write Enable to Output in High Z		0	8	0	8	0	8	ns
t _{DW}	Data in Valid to Write Enable HIGH		12		20		20		ns
t _{DH}	Data Hold Time		0		0		0		ns
t _{AS}	Address Valid to Write Enable LOW		0		0		0		ns
t _{CW} ^[9]	Chip Select LOW to Write Enable HIGH		20		30		40		ns
t _{OW} ^[8]	Write Enable HIGH to Output in Low Z		0		0		0		ns
t _{AW}	Address Valid to End of Write		20		30		35		ns

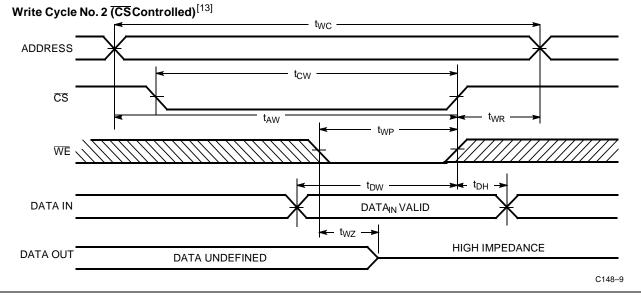

Notes:

6. 7. 8.


Chip deselected greater than 25 ns prior to selection. Chip deselected less than 25 ns prior to selection. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices. Transition is measured ±500 mV from steady-state voltage with specified loading in part (b) of AC Test Loads. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 9.

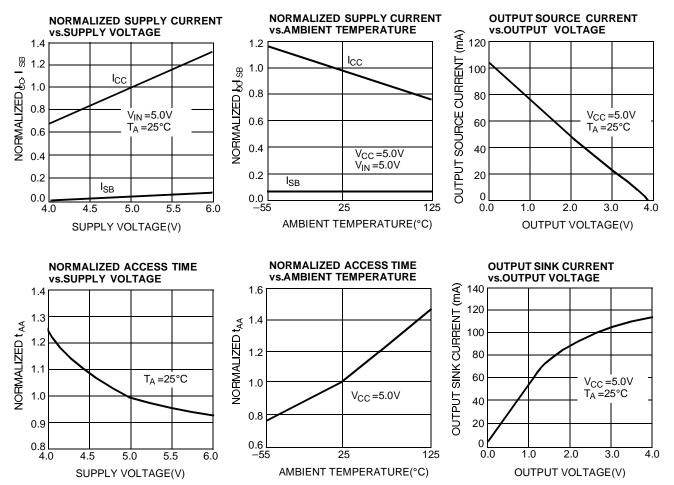
Switching Waveforms

Write Cycle No.1 (WE Controlled)

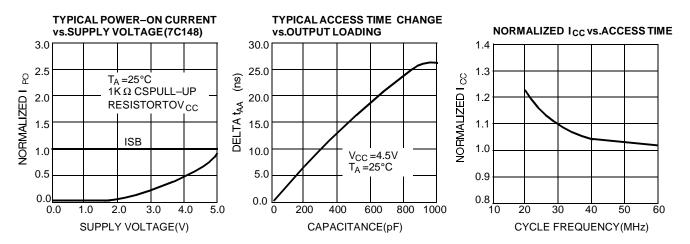


Notes:

10. WE is HIGH for read cycle. 11. Device is continuously selected, $\overline{CS} = V_{IL}$. 12. Address valid prior to or coincident with \overline{CS} transition LOW.


Switching Waveforms (continued)

Notes:


13. If \overline{CS} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C148-25PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
35	CY7C148-35PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C148-35DMB	D4	18-Lead (300-Mil) CerDIP	Military
45	CY7C148-45PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C148-45DMB	D4	18-Lead (300-Mil) CerDIP	Military

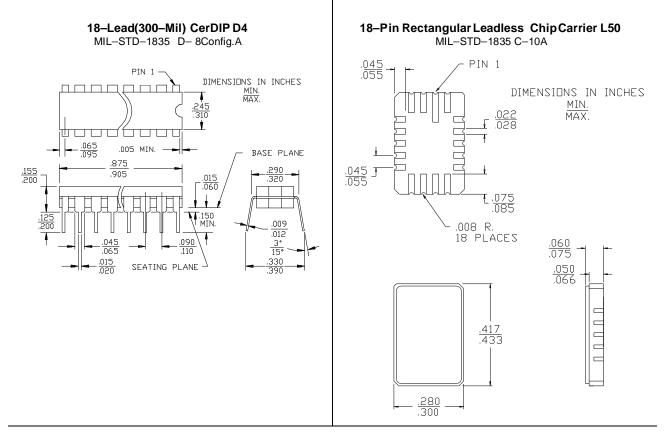
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C149-25PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
35	CY7C149-35PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C149-35DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C149-35LMB	L50	18-Pin Rectangular Leadless Chip Carrier	
45	CY7C149-45PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C149-45DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C149-45LMB	L50	18-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS Group A Subgroup Testing

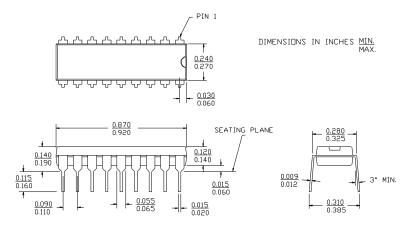
DC Characteristics

Parameters	Subgroups
I _{OH}	1, 2, 3
I _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB} ^[14]	1, 2, 3

Switching Characteristics


Parameters	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{ACS1} ^[14]	7, 8, 9, 10, 11
t _{ACS2} ^[14]	7, 8, 9, 10, 11
t _{ACS} ^[15]	7, 8, 9, 10, 11
t _{OH}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{WP}	7, 8, 9, 10, 11
t _{WR}	7, 8, 9, 10, 11
t _{DW}	7, 8, 9, 10, 11
t _{DH}	7, 8, 9, 10, 11
t _{AS}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
	•

Notes:


14. 7C148 only. 15. 7C149 only.

Document #: 38-00031-D

18-Lead(300-Mil) Molded DIP P3

© Cypress Semiconductor Corporation, 1993. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of charges.